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Abstract 

The dynamical theory of electron diffraction for 
quasicrystals (QCs) was used to treat the splitting 
behaviour of higher-order-Laue-zone (HOLZ) lines 
induced by dislocations in icosahedral quasicrystals 
(IQCs). The influences of some parameters on the 
splitting of HOLZ lines were calculated. On the basis 
of this calculation, several experimental convergent- 
beam electron diffraction patterns from the 
aluminium-copper-iron IQC were simulated. Good 
agreement between the experiment and the simu- 
lation confirms the correctness of the dynamical 
theory of electron diffraction for QCs. 

I. Introduction 

For crystals, the dynamical theory of electron dif- 
fraction (Hirsch, Howie, Nicholson, Pashley & 
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Whelan, 1965) has been successfully used to explain 
almost all the experimental phenomena. Head, 
Humble, Clarebrogh, Mortoon & Forwood (1973) 
developed a matching program to identify defects 
such as dislocations and stacking faults by use of the 
two-beam approximation of the dynamical theory. 
Tanaka, Terauchi & Kanemaya (1988) discussed the 
defocus convergent-beam electron diffraction 
(CBED) patterns from defected crystals and 
determined the Burgers vectors of the dislocations 
and the displacement vectors of the faults. Lu, Wen, 
Zhang & Wang (1990), Zou, Yao & Wang (1991) 
and Kuo & Wang (1992) developed the many-beam 
method to simulate experimental CBED patterns and 
obtained good agreement. Dynamical calculation or 
simulation has become a powerful tool to analyse 
and study defects in crystals. 

In this paper, we propose a method for treatment 
of the splitting of the higher-order-Laue-zone 
(HOLZ) lines in icosahedral quasicrystals (IQCs). 
This treatment is based on the dynamical theory of 
electron diffraction for QCs (see §2) proposed by 
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28 SPLITTING OF HIGHER-ORDER-LAUE-ZONE LINES 

Wang & Cheng (1987) and Cheng & Wang (1989). 
By using this dynamical theory, Wang, Wang & 
Deng (1991) successfully analysed small dislocation 
loops in the aluminium-silicon-manganese (A1-Si- 
Mn) IQC. Moreover, Wang & Dai (1993) determined 
the six-dimensional indices of the Burgers vector of 
dislocations in the (aluminium-copper-iron) (A1- 
Cu-Fe) IQC to be equal to 1/210,- 1,1,0,- 1,1], also 
using this dynamical theory. These facts encourage 
us to apply this dynamical theory of electron diffrac- 
tion for QCs to the simulation of the CBED patterns 
from QCs. To aid in the choice of appropriate 
parameters in the simulation, in the present work we 
studied the influences of several parameters on the 
splitting behaviour of HOLZ lines (§3). We then 
successfully simulated some experimental CBED pat- 
terns (§4). 

2. Theory 

The computer program was established on the basis 
of the wave-mechanical formulation of many-beam 
dynamical theory developed by Jones, Rackham & 
Steeds (1977) using the scattering-matrix method 
(Hirsch et al., 1965). The theory was formed origin- 
ally for crystals and extended by Wang & Cheng 
(1987) and Cheng & Wang (1989) to the case of 
quasicrystals with two substitutions. Firstly, for the 
IQC with six degrees of freedom, the term g. R, 
representing the phase difference caused by the dis- 
placement field R of a defect in a crystal, should be 
replaced by the inner product in six-dimensional 
space: 

~g. ~ - gll. RII + g ± .  R 1, (1) 

where ~ = gll + g± and R = R II + R ' ,  with gll and R II 
being the components in physical space and g± and 
R ± the components in the complementary space of 
the six-dimensional reciprocal vector fg and dis- 
placement vector ft, respectively. The parallel com- 
ponent R II is responsible for the elastic deformation 
around a defect, as in conventional crystals (phonon 
strain), while the perpendicular component R" leads 
to a local rearrangement of the basic tiles (phason 
strain) [e.g. Socolar, Lubensky & Steinhardt (1986)], 
so the term g±-R ± in (1) represents the effect of the 
phason and gll. R u represents the effect of the phonon. 

For crystals, the displacement field R caused by a 
general perfect dislocation in an infinite isotropic 
medium is calculated with the formula 

R = (1/27r){bq~ + besin(2q~)/4(1 - v) 

+ bxu[(1 - 2v)ln[rl/2(1 - v) + cos2~o/4(1 - v)]}, 

(2)  

where be is the edge component of the Burgers vector 
b, u is the unit vector along the positive direction of 

the dislocation line and v is the Poisson ratio of the 
medium [see e.g. Hirsch et al. (1965)]. Because the 
IQC is isotropic in elasticity, neglect of the coupling 
between phason and phonon gives similar expres- 
sions for R II and R ± (Wang & Wang, 1993) and 1~ = 
R II + R ± can then be expressed as 

1~ = (1/2zr){b~o + h sin(2~p)/4(1 - v) 

+ ~[(1 - 2 v ) l n l r l / 2 ( 1  - v) + cos (2~o) /4 (1  - v)]}, 

(3)  

where ~ and ~ are six-dimensional vectors corre- 
sponding to be and bxu, respectively, in (2) and their 
components r/, and E; (i = 1,2 .... ,6) can be obtained 
as follows. 

By giving the six-dimensional indices b, and ui (i = 
1,2 .... ,6) of the Burgers vector b and the dislocation 
line 6, respectively: 

6 

b ' -  Z biei, (4 )  
i=1 

6 

~=  Y ui~.~, (5) 
i=1 

their components in physical space can be easily 
obtained: 

6 
blJ = 2 bie!, (6) 

i=1 
6 

ull- Z uie!l, (7) 
i=l 

where the ~i are the basis vectors in six-dimensional 
space and the ell are their components in physical 
space. 

Let 

BU(i , j )  = ( b i u j -  bju,)/[2(1 + ~.2)],/2, 

where r = (1 + 5~/2)/2 is the golden ratio. The coeffi- 
cients e; in the expression 

6 

bllxull = Z 6 ie !  (8 )  
i=1 

can then be deduced to be 

E1 = BU(2,3) + BU(3,4) + BU(4,5) + BU(5,6) 

+ BU(6,1), 

E2 = BU(1,6) + BU(3,1) + BU(3,5) + BU(4,5) 

+ BU(4, 6), 

E3 = BU(1,2) + BU(4,1) + BU(4,6) + BU(5,2) 

+ BU(5, 6), 

e4 = BU(1,3) + BU(5,1) + BU(5,2) + BU(6,2) 
(9) 

+ BU(6, 3), 
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es=BU(1 ,4 )+  BU(6, 1) + BU(6,3) + BU(2,3) 

+ BU(2,4), 

E6= BU(1,5)+ BU(2, 1)+ BU(2,4)+ BU(3,4) 

+ BU(3, 5). 

With the relation 

b! = ullx(bllxd I) (10) 

and the definition 

UBU(i,j) = (u~ej - uje,)/[2(1 + "rZ)] '/2, 

the coefficients ~7; in the expression 
6 

b~ = 2 ne!l (11) 
i = 1  

can be easily obtained only by replacement of the 
BU(i,j) in (9) by the corresponding UBU(i,j). 

Therefore, the six-dimensional displacement vector 
can be expressed as 

6 

1~ = ~' R,~/, (12) 
i = 1  

with 

Ri= (1/27r){biq~ + r//sin(2q~)/4(1 - v) 

+ e;[(1 - 2v)lnlrl/2(1 - v) 

+ cos(2q~)/4(1 - v)]}. (13) 

Secondly, the extinction distance s~g of the IQC is 
calculated as 

1/ (g = S(gll)/(,n- VK), (14) 

where K is the magnitude of the wave vector k and 
S(glt)/V is the scattering amplitude per unit volume. 
According to Elser (1985) and Zhao, Wang, Cheng 
& Wang (1988), S(g II) is expressed as 

S(g fl) = Z Sl(i,j,k)S2(i,j,k), (15) 
i ~ i < j < k ~ 6  

where the S~(i,j,k) represent the phase relationships 
amongst all the rhombohedra constructed by {e!,e!J, 
el} and the S2(i,j,k) represent the structure factors of 
these types of rhombohedra. The S2(i,j, k) values are 
dependent on the atomic decoration in the 
rhombohedra and the simple quasilattice model 
(Elser, 1985) has been used in our calculations. 

3. Influences of several parameters on the splitting of 
HOLZ lines 

In this section, the following parameters have been 
chosen: a quasilattice constant of 0.90 nm, zone axis 
zll]l [ - 1.1,1.2,3.1 ], anomalous absorption ratio Ug/Ug 
= 0.05. Unless otherwise stated, the calculations for 
Figs. 2-5 were conducted for a specimen thickness t 
= 100 nm and a depth of dislocation in the foil de = 

t/2, with b =  1/2[0,- 1,0,- 1,1], fill[0,0,0,0,0,1] and 
an accelerating voltage of 100 kV. 

In most cases, the transmitted intensity as a func- 
tion of the deviation angle A from the Bragg condi- 
tion was calculated by using the two-beam dynamical 
approximation. The degree of splitting of HOLZ 
lines (induced by a defect) may be described by the 
following parameters: (/) r, the intensity ratio of the 
split subsidiary peaks (subpeaks) to the major peak; 
(ii) 6, the angular distance between the subpeak and 
the major peak, which can be written as 8 = / ~ m a j o r  - -  

Asub, where Asu b and Amajo r a re  the deviation angles 
of the subpeak and major peak, respectively; (iii) ns, 
the number of apparent subpeaks. Generally, the 
greater the value of r, 161 or ns, the more severe the 
splitting of the HOLZ line. 

Figs. l(a)-(c) are references for studying the split- 
ting and shifting behaviours of HOLZ lines, caused 
by the presence of dislocations. Fig. l(a) shows 
experimental (left) and simulated (right) 
[-1.1,1.2,3.1] zone-axis HOLZ-line patterns. For 
the simulated pattern, the quasilattice constant a -  
0.90nm, the accelerating voltage is 200kV, the 
anomalous absorption ratio U~/Ug=O.05, the 
thickness of the sample t = 140 nm and four beams 
(i.e. gl, g2, g3 and the transmitted beam) are 
included. The indices nj ( j - 1 , . . . , 6 )  of the three 
reflection vectors tgi (i = 1, 2, 3), their coordinates FI, 
F2 and F3 in physical space, the inner products ~" b 
in six-dimensional space and their corresponding 
inner products gll-bll in physical space are listed in 
Table 1. Figs. l(b) and (c) show intensity profiles of 
the ( 2 , 8 , 8 , - 2 , - 8 , - 2 )  HOLZ reflection calculated 
with foil thicknesses of 100 and 200 nm, respectively, 
quasilattice constant a = 0.9 nm, an accelerating 
voltage of 100 kV and an anomalous absorption 
ratio Ug/Ug = 0.05. (In our calculation of intensity 
profiles, the two-beam approximation is always 
used.) Obviously, the HOLZ line becomes narrower 
when the specimen thickness increases. 

In the following, we report the calculated results, 
which show the influences of several parameters on 
the splitting and shifting behaviour of HOLZ lines 
induced by dislocations. These parameters are: the 
distance di between the electron probe and the dis- 
location core, the depth de at which dislocation lies 
under the top surface of the sample, the thickness t 
of the sample and the value of ~," b. The sign of di is 
chosen to be positive (or negative) when the electron 
probe is focused on the side of the dislocation in the 
direction of ulluz II (or - ullxzll). 

When Idil decreases, i.e. the electron probe shifts to 
the dislocation, the ratio r, angular distance 8 and 
number of the subpeaks ns generally increase. This 
fact can be seen from Fig. 2, which shows that r and 
181 apparently increase when di decreases from 50 to 
20 nm. 
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Table 1. The indices of  ~, and the values of  both ~," 6 and g" "b" for three main reflections in Figs. l(a) and 6 

H O L Z  line no. nl* 112" /'i3" n4* n~* n6* Fl F2 F3 ~ ' 6  gN "h" 

1 4 10 2 - 6 - 4 6 5.09 5.09 0 1 1.17 
2 2 2 - 6 - 4 4 8 5.09 - 1.57 2.55 - 2 - 1.88 
3 2 8 8 - 2 - 8 - 2 0 6.67 - 2.55 3 3.05 

The HOLZ-line splitting behaviour is dependent 
on the depth de of the dislocation line under the top 
surface (see Fig. 3). In general, HOLZ lines split 
most apparently when de/t = 1/2 and the splitting 
behaviour is approximately symmetric about the foil 
centre. For instance, the intensity profile in the case 

(a) 

t= I OOnm x'~ /x""~--- / /  -- 

V 
! I 

(b) 

200nm ~ - - ;  " 

! I 

-0.5 O. 

A(0.01 rad) 

4 

0.5 

(c) 

Fig. 1. HOLZ-l ine  patterns and  rocking curves o f  a perfect 
A165Cu2oFe,5 IQC. (a) Experimental  (left) and simulated (fight) 
[ -  1.1,1.2,3.1] zone-axis HOLZ-l ine  patterns.  Fo r  the simulated 
pattern, the quasilattice constant  a = 0.90 nm, the accelerating 
voltage is 200 kV, the anomalous  absorpt ion ratio U~/Ug = 
0.05, the thickness o f  the sample t = 140 nm and four  beams 
(i.e. ~,  g2, g3 and the t ransmit ted beam) are included. (b), (c) 
Intensity profiles o f  the (2 ,8 ,8 -  2 , -  8 , -  2) H O L Z  reflection 
(the two-beam approximat ion being used) calculated with foil 
thicknesses o f  100 and 200 nm, respectively, quasilattice con- 
stant a = 0.9 nm, an accelerating voltage o f  100 kV and anoma-  
lous absorpt ion ratio U~/U~ -- 0.05. 

where the dislocation lies 10 nm below the top sur- 
face of the sample is the same as that when the 
dislocation lies 10 nm above the bottom surface of 
the sample (de = 90 nm). The same is true for the 
cases where de = 30 and de = 70 nm (30 nm above 
the bottom surface). 

The splitting behaviour of a HOLZ line varies 
greatly with changes in the thickness t of the foil 
specimen. When t increases, the ratio r and number 
of subpeaks ns increase, while the angular distance lsI 
decreases (see Fig. 4). 

di= 50nm 

I I 

40 

! 

30 

I 

I I I 

20 

1 0  

I I 

i I I 

-0.5 0. 0.5 
A(0.01 rad) 

Fig. 2. Changes in intensity profiles o f  (2 ,8 ,8 , -  2 , -  8 , -  2) H O L Z  
lines with change in distance di. The electron probe is focused 
on the side o f  the dislocation pointed to by u"xz". The related 
parameters are 6 = 1/210, - 1,1,0, - 1,1], fi[I [0,0,0,0,0,1], 
t = 100 nm, de = t/2 and U~/Ug = 0.05. 
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The value of the inner product fg.b influences 
strongly the splitting behaviour of a HOLZ line. The 
intensity ratio r of the split subsidiary peak to the 
major peak increases with the value of the inner 
product fg. b. 

Fig. 5 shows the dependence of the sign of 8 on 
the sign of di or b. Reversal of the sign of di 
[compare Fig. 5(b) with Fig. 5(a)] or of b [compare 
Fig. 5(c) with Fig. 5(a)] means that the sign of 8 is 
also reversed. The results shown in Fig. 5 may be 
summarized as 

sign(8) = - sign(fg'b/di). (16) 

However, if the incident probe lies at the dislocation 
core, the splitting behaviour becomes rather compli- 
cated. For example, Fig. 2 shows a reversal of the 
sign of 8 relative to (16) and ns = 3 when di = 10 nm. 

4. Simulation of experimental defocus CBED patterns 

Based on the above results, we have simulated 
several experimental CBED patterns from the 
A1-Cu-Fe IQC. Fig. 6 is an example. Fig. 6(a) is an 
experimental defocus CBED pattern with the 
dislocation DD illuminated. Three main HOLZ lines, 
fgl, g2 and g3, are split into one, two and three 
nodes, respectively. From the experiment and 
related analysis, some parameters can be obtained: 
u"ll[l.1,- 7.2,3.5], b = 1/210,- 1,1,0,-  1,1], accelerat- 
ing voltage = 200 kV, zone axis Ill-1.1,1.2,3.1], a = 
0.9 nm; the diameter of the defocus area is approxi- 
mately 120 nm. When the other parameters were 
chosen to be Ug/Ug = 0.05, foil thickness t = 140 nm, 
de = t/2 and ~ 1[0,2,- 4,0,4,- 3] and three HOLZ 
reflections fgl, g2 and fg3 were included, the simulated 

de= 10nm 

1 

3O 

I I 

50 

I i 

I I I 

70 

1 

9O 

I I 

I I I 

-0.5 0. 0.5 

A(0.01 rad) 

Fig. 3. The influence of the depth de of the dislocation under the 
top surface on the splitting of HOLZ line (2 ,8 ,8 , -2 , -  8,-2) .  
The parameters in this figure are the same as those in Fig. 2 but 
di = 30 nm is constant and de changes from 10 to 90 nm. 

t= 120nm 

I I I 

140 ~ ' - ' - - - - -  

! I I 

160 

-0.5 0. 

I I 

180 ~ ~ , ~ - -  

I 

+ o  

0.5 
A(O.OI rad) 

Fig. 4. The influence of the thickness t of the specimen on the 
splitting of the (2,8,8,- 2 , -  8 , -  2) HOLZ line. The dislocation 
is at the middle of the specimen. The other parameters are the 
same as those in Fig. 2 but di = 30 nm is constant and t changes 
from 100 to 200 nm. 
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defocus CBED pattern shown in Fig. 6(b) was 
obtained, in good agreement with the experimental 
one (Fig.6a). 

5. Discussion 

The good agreement between the experiment and the 
simulation confirms that the dynamical treatment 
method of the splitting of HOLZ lines induced by 
dislocations in the IQC was practicable, although 
simple assumptions about the displacement field of 

b,di ~ - ~  

(a) 
! ! l 

b.-di 

(b) 
! I I 

-b.di 

(c) 
! ! ! 

-0.5 0. O.5 

A(0.01 ,'ad) 

Fig. 5. The influence of the sign of 6 or di on the relative positions 
of the split subpeak. The parameters for (a) are 6 = 
1/2[0,- l , l , 0 , -  1,1], U;/U x = 0.05, t = 100 nm, de = t/2 and di 
= 30 nm. 

Fig. 6. (a) Experimental and (b) simulated defocus CBED pat- 
terns. For (b), three HOLZ reflections ~,, g,2 and ~3 are included, 
with zone axis z" ]J [-1.1,1.2,3.1], accelerating voltage 200 kV, 
quasilattice constant a = 0.9 rim, foil thickness t = 140 nm, de = 
t/2, U;/Ug = 0.05, defocus area of 120 nm in diameter, b = 
1/2[0,- l , l , 0 , -  l,l] and fi II [0 ,2 , -4 ,0 ,4 , -  3]. 

the dislocation in the IQC and the simple IQC 
structure model were made. 

The influences of some parameters, such as di, de, 
t and ~'b, on the splitting behaviours, calculated in 
this work for an icosahedral quasicrystal, are very 
similar to those calculated by Zou, Yao & Wang 
(1991) for a silicon crystal. This is not surprising 
because the most important difference between the 
theories for crystals and for quasicrystals lies in the 
phase factor, which is exp ( - 2 t r i g ' R )  for crystals 
and exp ( -  27ri~'1~) = exp [ -  27ri(gll'RII + g± .R±)] 
for quasicrystals. As pointed out by Elser (1985), 
only when g i  is small enough can the corresponding 
reflections f~ possess an appreciable intensity. There- 
fore, we have ~. 1~ = gll. Rllan d ~. fi -, gl[. bll as revealed 
m the paper by Wang & Dai (1991) and in Table 1 of 
this paper; hence, there is no essential difference 
between the cases of crystals and quasicrystals. 

Strictly speaking, the correctness of the perpen- 
dicular components R ± of the six-dimensional dis- 
placement field 1~ obtained from (3) or (13) by 
projection is still open to question. However, since 
the term g±-R ± is much smaller than the term gll.RII, 
the strict expression for R ± is not important for the 
simulation of the CBED patterns and the contrast 
images. 

References 

CHENG, Y. & WANG, R. (1989). Phys. Status Solidi B, 152, 33-37. 
ELSER, V. (1985). Phys. Rev. B, 32, 4892--4898. 
HEAD, A. K., HUMBLE, P., CLAREBROGH, L. M., MORTOON, A. J. 

& FORWOOD, C. T. (1973). Computed Electron Micrographs and 
Defect Identification. Amsterdam: North-Holland. 

HIRSCH, P., HOWIE, A., NICHOLSON, R. B., PASHLEY, D. W. & 
WHELAN, M. J. (1965). Electron Microscopy of Thin Crystals. 
Huntington, New York: Robert E. Krieger. 

JONES, P. M., RACKHAM, G. M. ,~. STEEDS, J. W. (1977). Proc. R. 
Soc. London Ser ,4,354, 197-222. 

KUO, K. H. ~ WANG, R. (1992). Electron Microscopy. Proc. 5th 
Asia-Pacific Electron Microscopy Conference, pp. 22-27. 
Singapore: World Scientific. 

Lu, G., WEN, J., ZHANG, W. ~ WANG, R. (1990). Acta Cryst. A46, 
103-112. 

SOCOLAR, J. E. S., LUBENSKY, T. C. & STEINHARDT, P. J. (1986). 
Phys. Rev. B, 34, 3345-3360. 

TANAKA, M., TERAUCHI, M. & KANEYAMA, T. (1988). Convergent- 
Beam Electron Diffraction II. Tokyo: JEOL Ltd. 

WANG, R. ~" CHENG, Y. (1987). Mater. Sci. Forum, 22-24, 
409-420. 

WANG, R. & DAI, M. (1993). Phys. Rev. B. In the press. 
WANG, Z. & WANG, R. (1993). J. Phys. Condens. Matter. In the 

press. 
WANG, Z., WANG, R. & DENG, W. (1991). Phys. Rev. Lett. 66, 

2124-2127. 
ZHAO, D., WANG, R., CHENG, Y. & WANG, Z. (1988). J. Phys. F, 

18, 1893-1904. 
Zou, H., YAO, X. & WANG, R. (1991). Acta Cryst. A47, 490-497. 


